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Abstract

Objective: Methods for the detection of epileptiform events can be broadly divided into two main categories: temporal detection
methods that exploit the EEG’s temporal characteristics, and spatial detection methods that base detection on the results of an
implicit or explicit source analysis. We describe how the framework of a spatial detection method was extended to improve its per-
formance by including temporal information. This results in a method that provides (i) automated localization of an epileptogenic
focus and (ii) detection of focal epileptiform events in an EEG recording. For the detection, only one threshold value needs to be
set.
Methods: The method comprises five consecutive steps: (1) dipole source analysis in a moving window, (2) automatic selection of focal
brain activity, (3) dipole clustering to arrive at the identification of the epileptiform cluster, (4) derivation of a spatio-temporal template
of the epileptiform activity, and (5) template matching. Routine EEG recordings from eight paediatric patients with focal epilepsy were
labelled independently by two experts. The method was evaluated in terms of (i) ability to identify the epileptic focus, (ii) validity of the
derived template, and (iii) detection performance. The clustering performance was evaluated using a leave-one-out cross validation.
Detection performance was evaluated using Precision-Recall curves and compared to the performance of two temporal (mimetic and
wavelet based) and one spatial (dipole analysis based) detection methods.
Results: The method succeeded in identifying the epileptogenic focus in seven of the eight recordings. For these recordings, the mean
distance between the epileptic focus estimated by the method and the region indicated by the labelling of the experts was 8 mm. Except
for two EEG recordings where the dipole clustering step failed, the derived template corresponded to the epileptiform activity marked by
the experts. Over the eight EEGs, the method showed a mean sensitivity and selectivity of 92 and 77%, respectively.
Conclusions: The method allows automated localization of the epileptogenic focus and shows good agreement with the region indicated
by the labelling of the experts. If the dipole clustering step is successful, the method allows a detection of the focal epileptiform events,
and gave a detection performance comparable or better to that of the other methods.
Significance: The identification and quantification of epileptiform events is of considerable importance in the diagnosis of epilepsy. Our
method allows the automatic identification of the epileptic focus, which is of value in epilepsy surgery. The method can also be used as an
offline exploration tool for focal EEG activity, displaying the dipole clusters and corresponding time series.
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1. Introduction

The detection of epileptiform events in the EEG has
been a long-standing goal. Since the late ’70s different
approaches towards automatic detection have been pro-
posed (see Frost (1985), Wilson and Emerson (2002) for
a review). Typically, these detection methods are classified
according to the signal processing technique(s) used:
mimetic, linear predictive filtering, template matching, arti-
ficial neural networks, independent component analysis,
etc. Alternatively, these detection methods can be broadly
divided into two main categories: temporal detection meth-
ods that exploit the EEG’s temporal characteristics, and
spatial detection methods that base the detection on the
results of an implicit or explicit source analysis.

Methods from the first category include mimetic
approaches which perform a morphological analysis.
Features related to the spike morphology such as the
amplitude, sharpness and duration are derived by a wave
and halfwave analysis (Gotman and Gloor, 1976; Dingle
et al., 1993). Morphological features can also be derived
using the discrete or continuous wavelet transformation
(Goelz et al., 2000; Latka et al., 2003) or the Walsh
transformation (Adjouadi et al., 2004; Adjouadi et al.,
2005). Detection is accomplished by comparing the esti-
mated features with some predefined thresholds typical
for epileptiform discharges (Gotman and Gloor, 1976)
or via an artificial neural network (Acir et al., 2005; Tza-
llas et al., 2006). All temporal detection methods are
designed to be applied to one channel of the EEG,
and thus do not take advantage of the information on
the topography of the epileptiform events. To exploit
the relationship between the different channels, these
methods are typically applied to each channel individu-
ally and subsequently the detection results are combined.
In its simplest form, a requirement is that one event
should be found simultaneously on different channels
(Black et al., 2000; Acir et al., 2005). An enhanced
approach is to use an expert system to incorporate a pri-

ori knowledge on the expected field distribution (Glover
et al., 1989; Dingle et al., 1993; James et al., 1999; Liu
et al., 2002; Tzallas et al., 2006).

Spatial methods on the other hand assume a model of
the underlying electrical activity and base the detection
on the results of a source analysis. The advantage of this
approach is that the relationship between the different
channels is fully exploited. This information is included
from the onset of the analysis, based on a physical
model, rather than incorporated afterwards, more or less
ad-hoc. The detection method in Kobayashi et al. (2002)
is based on independent component analysis (ICA) and a
dipole analysis of the ICA components. The method in
Ossadtchi et al. (2004) is a method applied to MEG,
based on source analysis using ICA and recursively
applied and projected multiple signal classification
(RAP-MUSIC). In Van Hoey (2000), Van Hoey et al.
(2000) the detection is performed by searching for focal
epileptiform activity using a principal component analy-
sis (PCA) decomposition and a single dipole source
model. However, in general, these spatial methods do
not fully exploit the temporal information. The method
by Van Hoey (2000), Van Hoey et al. (2000) does not
put any restrictions on the waveform which makes the
method useful for searching for any focal activity in
the EEG but results in a low detection performance for
epileptiform events, since it picks up activity that does
not match typical epileptiform activity (Vanrumste
et al., 2005).

In this paper we describe how the framework of the spa-
tial detection method described in Van Hoey (2000), Van
Hoey et al. (2000) can be extended to make use of the valu-
able temporal information in the EEG. This results in a
method that provides (i) automated localization of an epi-
leptogenic focus and (ii) detection of focal epileptiform
events in an EEG recording. We have applied and evalu-
ated our method on the EEG of eight paediatric patients
with focal epilepsy.

2. Methods

2.1. EEG data

The data set consisted of eight routine EEG records
(sampled at 256 Hz, 1–30 Hz band-pass filtered, 19 elec-
trodes according to the international 10–20 standard, aver-
age referenced) from eight paediatric patients with focal
epilepsy. The patients had an average age of 5.5 years
(range 3–10 years). The patients were selected out of a pool
of available data to include only paediatric patients. Each
EEG record lasted 12–21 min (total duration: 2 h
10 min). All EEGs were recorded while patients were
awake. EEGs were included only if they displayed at least
one definite epileptiform event. Bad quality EEGs were
excluded. There were no EKG artifacts. This data set was
the same as that in Vanrumste et al. (2005).

The epileptiform events in each recording were labelled
independently by two experienced electroencephalogra-
phers (G.C., K.V.) as definite or questionable. Both scor-
ings were then used to construct a consensus labelling
(gold standard) for evaluation of the detection methods.
Table 1 lists a summary of the EEG records and the clinical
findings for each patient.



Table 1
Summary of the EEG records and clinical findings for the eight paediatric patients for which EEG data was analysed in this study

Patient Sex/age Duration
(m:s)

GC
#d + #q

KV
#d + #q

Consensus
#d + #q

EEG summary Brain scan summary

1 M/4 12:26 19 + 66 43 + 54 41 + 73 Parasagittal epileptiform discharges
prominent from the left central region

Moderately extensive left-side
infarction (MRI)

2 F/3 13:30 65 + 97 43 + 107 75 + 135 Diffuse excess of fast activity and frequent
discharges mostly arising from the left
occipital region

Diffuse hypoxic/ischaemic brain
injury (CT)

3 F/4 14:19 6 + 92 114 + 219 67 + 268 Discharges predominantly from right
parietal region, plus slower background
from this region

No record

4 F/5 13:21 1 + 105 4 + 109 2 + 158 Right central and mid-temporal
discharges with a slow background

Destructive white matter lesion in
right frontal lobe (MRI)

5 M/5 20:52 96 + 88 52 + 154 106 + 111 Occipital sharp waves typical of benign
occipital epilepsy

Normal (MRI)

6 M/6 13:35 16 + 159 30 + 119 44 + 150 Drug induced beta, right antero-temporal
to mid-temporal sharp wave discharges

No record

7 M/7 20:53 7 + 31 7 + 29 9 + 30 Right centro-temporal sharp wave
discharges

Normal (CT)

8 F/10 21:10 102 + 167 193 + 126 174 + 182 Slowing in right anterior quadrant and
right frontal sharp spike and wave
discharges

Right frontal lobe lesion (MRI)

Total 02:10:06 312 + 805 486 + 917 518 + 1107

#d and #q are the number of definite and questionable epileptiform events, as labelled by two experts (G.C. and K.V.).

1758 P. Van Hese et al. / Clinical Neurophysiology 119 (2008) 1756–1770
2.2. Spatio-temporal detection method

Our new method for detection of focal epileptiform
events comprises five consecutive steps: (1) dipole source
analysis of the EEG in a moving window, (2) selection of
focal brain activity based on the source analysis results,
(3) clustering of dipoles to identify an epileptiform cluster,
(4) derivation of a spatio-temporal template of the epilep-
tiform activity, and (5) template matching using the derived
template to identify the epileptiform activity present in the
EEG recording. A schematic overview of this method is
depicted in Fig. 1.

The goal of the first two steps is to select sufficient time
instances that represent the focal epileptiform activity we
are interested in. The dipole clustering in the third step
allows us to derive a spatio-temporal template of this activ-
ity. This template is used in the fourth and fifth steps to
identify the occurrences of the activity in the EEG
recording.
2.2.1. Dipole source analysis

The EEG X 2 IRm�n (m electrodes, n time samples) is
analysed in a moving window with length L ¼ 64
(250 ms) and step size S ¼ 6 (25 ms). For each window k,
centred around the time instance tk ¼ ðk � 1ÞS þ L=2, the
EEG segment Wk ¼ Xð:; tk � L=2Þ 2 IRm�L is decomposed
by a principal component analysis (PCA), using a singular
value decomposition (SVD): Wk ¼ UkRkVT

k , and the first
left eigenvector (which represents the potential topography
of the first principal component) is analysed using a dipole
model by minimizing the following cost function:

RREk ¼ jjUkð:; 1Þ � LðrkÞdkekjj22 ð2:1Þ
with rk the dipole position, dk ¼ dkek the dipole compo-
nents (dipole intensity and orientation), L 2 IRm�3 the
lead field matrix which relates the dipole parameters to
the surface potentials, and RREk the relative residual en-
ergy (the fraction of the energy which cannot be ex-
plained by a dipolar field). For the minimization of the
cost function, we chose the Nelder–Mead simplex algo-
rithm (Nelder and Mead, 1965), because of its relative
simplicity. A three-shell spherical head model (Salu
et al., 1990) was used with radii equal to 8.0, 8.5 and
9.2 cm for the brain, skull and scalp compartment,
respectively, and a soft tissue to skull conductivity ratio
of 16 (Oostendorp et al., 2000).

For each window k, we defined Sk as the fraction of the
energy of the first principal component:

Sk ¼
r2

1kPm
i¼1r

2
ik

ð2:2Þ

Each EEG segment Wk is thus modelled as
Wk ffiUkð:; 1Þr1kVkð:; 1ÞT

ffiLðrkÞdkekr1kVkð:; 1ÞT; ð2:3Þ

where the approximation is more accurate for high Sk and
low RREk. The dipole time series are contained in the first
right eigenvector Vkð:; 1ÞT 2 IR1�L. The time series
yk 2 IR1�2L of the active source in a neighbourhood of
length 2L centred around the kth window can be found by
a spatial filter using the first left eigenvector as a weight
vector: yk ¼ Ukð:; 1ÞTXð:; tk � LÞ. Due to the orthogonality
constraint of the SVD, inside the analysis window,
yk � r1kVkð:; 1ÞT.
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3. Dipole clustering

dominance of first principal component
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1. Dipole source analysis
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Fig. 1. A schematic overview of the detection method. The method comprises five consecutive steps: (1) dipole source analysis of the EEG in a moving
window, (2) selection of focal brain activity based on the source analysis results, (3) clustering of dipoles to identify an epileptiform cluster, (4) derivation
of a spatio-temporal template of the epileptiform activity, and (5) template matching using the derived template to identify the epileptiform activity present
in the EEG recording.
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2.2.2. Selection of focal brain activity
Focal brain activity is identified by selecting all windows

k that fulfil the criteria (i) Sk > hS , (ii) RREk < hRRE, and
(iii) jjrkjj2 < he. The first criterion ensures the presence of
a single dominant source. The second criterion confirms
the detection of a source characterized by a dipolar field
and, hence a focal source. Nevertheless, it is possible to
obtain low RRE values for spatially extended sources
(Hara et al., 1999), and, therefore, a low RRE value is a
necessary but not sufficient condition. The third criterion
places a restriction on the dipole eccentricity so that only
physiological meaningful dipole sources are retained and
certain EEG artifacts are removed (Flanagan et al., 2003).

The threshold he was set to 0.95 � 8.0 cm, corresponding
to the outer limit of the cortex, since we use a three-shell
spherical head model with an inner radius of 8.0 cm. hS

and hRRE are two free parameters of the method still to
be determined.

Each selected window is characterized by a dipole posi-
tion rk, orientation ek, and time series yk. However, before
these parameters can be used in the dipole clustering step
of the algorithm, three issues need to be resolved. First, to
allow the construction of a temporal template, an align-
ment of the dipole time series is necessary. Also, we found
that for some epileptiform events consisting of a spike-
and-wave complex the parameter S used in the selection
step of the method obtains its highest values at the wave

of the epileptiform events, rather than at the spike. So
some of the selected windows were positioned on the
wave following the spike, rather than on the spike. Since
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we want to extract the temporal waveform of the spike,
we need to look at the time series in a small neighbour-
hood around the selected windows. Next, since the dipole
orientation can be flipped by changing the sign of the
dipole time series (and vice versa), without affecting the
model in Eq. (2.3), there is a sign ambiguity in the dipole
orientation and dipole time series. Finally, because we use
overlapping windows in the analysis, typically, a single
event results in the selection of a number of consecutive
segments which will have to be grouped into one selected
representative segment.

See Fig. 2 for an illustration of the time series obtained
in consecutive selected windows.

The alignment problem was resolved by calculating the
sharpness sk of the time series yk and aligning the time ser-
ies at the point sk of maximal sharpness magnitude:
sk ¼ arg max jskj. The sharpness was calculated by twice
applying a linear regression filter with a width of 20 ms
ðA ¼ 2Þ : akðnÞ ¼

PA
i¼�Aiykðnþ iÞ; skðnÞ ¼

PA
i¼�Aiakðnþ iÞ.

The sign ambiguity was resolved by forcing the sharpness
to be negative at sk (thus forcing the spike to exhibit a local
maximum at this point). Selected (consecutive) windows
for which the difference between their associated time
instances sk was smaller then 125 ms were replaced by the
selected window for which its centre position was closest
to its associated time instance sk.

Choosing a window of length Lt ¼ 125 ms centred
around sk, we obtain a set of selected EEG segments,
each representing focal brain activity characterized by a
dipole position rk, dipole orientation e0k, and (aligned)
time series y0k:
L=250ms

2L

τk

yk

tk

σ1kVk(:,1)T

Fig. 2. An illustration of the time series obtained in consecutive selected
windows. The borders of the moving analysis window are indicated with
black vertical lines. The red vertical line indicates the point of maximal
sharpness magnitude. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this paper.)
Xðsk � Lt=2Þ ffi LðrkÞdkekykðsk � Lt=2Þ
¼ LðrkÞðcekÞðcdkykðsk � Lt=2ÞÞ
¼ LðrkÞe0ky0k ð2:4Þ

with c ¼ signð�skðskÞÞ.
2.2.3. Spatio-temporal dipole clustering

The set of dipole positions rk and orientations e0k is clus-
tered using a sequential clustering algorithm (Theodoridis
and Koutroumbas, 1999), as used in Ossadtchi et al.
(2004).

First, we calculate a dissimilarity matrix Yr which con-
tains the Euclidean distances between each pair of dipole
position vectors ri and rj : Yrði; jÞ ¼ jjri � rjjj2. The first clus-
ter is found by choosing the row i1 for whichP

jIðYrði1; jÞ < drÞ is maximal, with Ið�Þ the indicator func-
tion ðIðtrueÞ ¼ 1; IðfalseÞ ¼ 0Þ and dr a preset threshold
which determines the maximum radius of the dipole clusters.
The first spatial cluster is the set of dipoles
I1 ¼ fj : Yrði1; jÞ < drg which are within a distance dr of
the centroid i1. The entries of the distance matrix corre-
sponding to this set are removed and the procedure is
repeated until the remaining clusters contain less then N min

dipoles, with N min another preset threshold.
Next, each spatial cluster is subdivided into smaller clus-

ters using the same procedure as above, but now with a dis-
similarity matrix Ye ¼ acosðe0Ti e0jÞ containing the angles
between each pair of dipole orientation vectors e0i and e0j,
and setting a threshold de.

As a result, we obtain clusters of similar dipole position
and orientation vectors. Similarly, each cluster could be
subdivided using a dissimilarity matrix containing the
Euclidean distances between the time series y0k. However,
for our data the time series within each cluster already
showed similar waveforms and no further clustering was
needed.

For all EEG records, we set Nmin ¼ 10 as the minimum
number of required dipoles in one cluster. dr and de are free
parameters of the method that remain to be determined
(see Section 2.3.4).
2.2.4. Spatio-temporal template
If more than one cluster is found, the cluster with the

maximum sharpness magnitude at the peak of the normal-
ized average of the time series corresponding to the dipoles
in that cluster is assumed to correspond to the epileptiform
region in the brain, and termed ‘epileptiform cluster’:

Iepi ¼ arg max
I i

sharpness
E y0j

h i

E y0j
� ��� ��

2

0
@

1
A

������

������
; j 2 I i; ð2:5Þ

with sharpness being the sharpness at the peak of the
time series as calculated in Section 2.2.2. See Fig. 3
for an illustration of this selection criterion. A spatio-
temporal template T 2 IRm�Lt for activity from the epi-
leptiform cluster was constructed using a dipole model,
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Fig. 3. The dipole time series for the three clusters found for EEG record 5. The red bold line is the average time series per cluster. The first two clusters
show no typical epileptiform time series, while the third cluster reveals a clear epileptiform pattern. The third cluster was selected by the method as the
epileptiform cluster because, of all three clusters, it has the largest sharpness magnitude at the peak of the normalized average time series (sharpness
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version of this paper.)
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with the dipole position, orientation, and time series
parameters equal to the mean of the dipole position,
orientation, and time series parameters of the epilepti-
form cluster:

vT ¼ LðrT ÞeT

T ¼ vT yT ð2:6Þ

with rT ¼ E½rj	; eT ¼ E½e0j	; yT ¼ E½y0j	; j 2 Iepi.

2.2.5. Template matching

In the final step of the algorithm, the signal u 2 IR1�n orig-
inating from the position of the epileptiform cluster is mon-
itored using a quiescent beamformer (Van Veen and
Buckley, 1988), i.e., using a weight vector equal to
wQ ¼ vT ðvT

T vT Þ�1 : u ¼ wT
QX. A detection is made for those

time instances s were the match cðsÞ ¼ u

ðs� LT=2ÞTyT=jjyT jj
2
2 exhibits a local maximum and exceeds

a detection threshold hc. Both u and yt were zero-meaned to
calculate cðsÞ. The match cðsÞ is normalized so that cðsÞ
equals 1 for an epileptiform event in the EEG whose time ser-
ies has the same norm as that of the template time series yT .

2.3. Evaluation of the spatio-temporal detection method

2.3.1. Localization of epileptic focus

To evaluate the localization results of the proposed
method, the epileptiform events in the EEG labelled as defi-
nite according to the consensus scoring, were subjected to a
dipole analysis. A window of Lt ¼ 125 ms was centred
around each time instance in the EEG marked as definite,
and dipole parameters were fitted to the first principal com-
ponent of this segment (using a three-shell spherical head
model, radii 8.0, 8.5 and 9.2 cm, soft tissue to skull conduc-
tivity ratio of 16). Next, the point of highest density of the
dipole location vectors was determined using the clustering
procedure outlined in 2.2.3, with dr ¼ 4:0 cm and
Nmin ¼ 1. The mean of all dipoles in a sphere with radius
1.5 cm around the centroid of the first cluster served as the
centre of a spherical region of definites (ROD) with radius
1.5 cm, indicating the epileptic focus (the value of 1.5 cm is
not crucial here and is merely for visualization). To assess
the concurrence of the epileptiform cluster with this ROD,
the Eucledian distance d between the centre of the ROD
and the mean of all dipole position vectors in the epilepti-
form cluster was calculated.

2.3.2. Template

The validity of the template was evaluated by comparing
the template T with Vdef , the mean of all EEG segments
whose dipole position vector lies inside the constructed
ROD, using the error measure

RRE ¼
Vdef � aoptT
�� ��2

F

Vdefk k2
F

; ð2:7Þ

with aopt ¼
P

ijVdefði; jÞTði; jÞ= Vdefk k2
F , and jj � jjF the

Frobenius norm.

2.3.3. Detection performance

In the following paragraphs, we describe three detection
methods that served as a reference in the evaluation of the
detection performance of the new detection method. The
first two methods are temporal detection methods (mimetic
and wavelet) which perform the detection on a single EEG
channel (that has to be selected beforehand). The third
method is a spatial detection method in which the detection
is based on the results of dipole analysis in a moving
window.

2.3.3.1. Mimetic detection method. This method is a basic
temporal detection method, similar to the first step found
in most mimetic algorithms (Gotman and Gloor, 1976;
Glover et al., 1989; Dingle et al., 1993). The EEG is



Table 2
Rules for the construction of a consensus labelling, given the dichotomous
labelling (d, definite; q, questionable; –, no matching event) of two experts

Expert 1 d d q q d q – –
Expert 2 d q d q – – d q

Consensus d d d q q q q q

Table 3
Rules for the assignment into TP (true positives), FP (false positives) and
FN (false negatives) (ni, not included for the calculation of sensitivity and
selectivity), given a consensus labelling and the set of events marked by a
detection method (d, definite; q, questionable; D, detected; –, no matching
event)

Consensus d d q q –
Detector D – D – D

Event TP FN TP ni FP
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divided into segments and sequences according to rules
described in Gotman and Gloor (1976). Combinations
of consecutive segments and sequences are termed half-
waves, and for each wave (a wave consists of two contig-
uous halfwaves) and its constituent halfwaves, the
duration, amplitude, and sharpness at the top, are calcu-
lated according to the procedure described in Dingle
et al. (1993).

A detection is made if all parameters exceed preset
thresholds. In our implementation we chose to use only
the amplitude and sharpness parameters, because (i) these
parameters are the most important in characterizing an epi-
leptiform waveform (Wilson et al., 1996) and (ii) we wanted
to have a basic method as a reference. Note that due to the
way waves and halfwaves are determined (via the rules
adhered to in the decomposition of the EEG), the duration
of the epileptiform activity is implicitly taken into
consideration.

2.3.3.2. Wavelet detection method. This method is wavelet
based as used by Latka et al. (2003). The algorithm is
founded on the behaviour of the wavelet power spectrum
of the EEG signal across scales (and thus not only on its
values). The EEG is analysed in a moving window
(length 5 s, overlap 1 s) by the continuous wavelet trans-
form using the Mexican hat wavelet. To reduce depen-
dence on the amplitude of the EEG, the wavelet power
is normalized by the variance r2 of the EEG signal in
the window being analysed: waðnÞ ¼ W 2

aðnÞ=r2, with
W aðnÞ the continuous wavelet transform of the EEG at
time index n, and scale a. The square of the normalized
wavelet power w2

a is observed in three different scales,
and an epileptic spike is identified at time instance i if
all of the following criteria are met: (i) w2

7ðiÞ > w2
20ðiÞ,

i.e., the square of the normalized wavelet power
decreases from scale 7 to scale 20, (ii) w2

7ðiÞ > T 1, and
(iii) w2

3ðiÞ > T 2, with T 1 and T 2 two preset threshold
values.

2.3.3.3. Dipole analysis detection method. This method is
spatially based via the results of a dipole analysis and
was proposed by Van Hoey (2000), Van Hoey et al.
(2000). The EEG is analysed in a moving window
(length 250 ms, step size 25 ms). In each window, the
first principal component (obtained using a singular
value decomposition (SVD)) is analysed using a fixed
dipole model (three-shell spherical head model, radii
8.0, 8.5 and 9.2 cm, soft tissue to skull conductivity
ratio of 16). A detection is made if (i) the fraction of
the energy of the first principal component S is above
a threshold hS, and (ii) the relative residual energy
(RRE) of the dipole model drops below a threshold
hRRE.

This method imposes no constraints on the waveform of
the detected EEG signal. The underlying assumption is that
the epileptiform activity is generated by a single focal
source. The first criterion ensures the presence of a single
dominant source. The second criterion confirms the detec-
tion of a source characterized by a dipolar field and, hence
a focal source.

2.3.3.4. Evaluation measures. To evaluate the performance
of the detection method(s), we calculated sensitivity and
selectivity values. Sensitivity (or recall) is defined as the
ratio between the number of TP (true positives) and the
number of TP and FN (false negatives). Selectivity (or pre-
cision) is the ratio between the number of TP and the num-
ber of TP and FP (false positives).

Given the labelling of the two experts, Table 2 shows
how to derive the consensus labelling. An event marked
by the first expert is considered to match an event
marked by the second expert, if the time difference
between these two events is smaller than 250 ms. Consec-
utive markings are counted as one, if their time instances
fall within a time window of 500 ms. Because of labelling
into two categories (definite and questionable), additional
rules were required to agree on the definition of the TP,
FP and FN. Given the consensus labelling and the
results of the detection method, Table 3 shows the rules
we adhered to for the comparison of the different
markings.

Each detection method was evaluated by comparing the
detection result with the consensus labelling. For each
method we constructed a precision-recall curve (PR-curve),
which depicts the trade-off between sensitivity and selectiv-
ity, for different values of the detection parameter(s). As a
summary of the PR-curve, we tabulated the sensitivity and
selectivity values of the working point M , defined as the
point on the PR-curve closest to the optimal point (1.00,
1.00). This point M was chosen over the intercept of the
PR-curve with the line of equal sensitivity and selectivity,
because for some EEG records equal sensitivity and selec-
tivity could not be obtained due to the influence of artifacts
on the detection performance of the particular detection
method.



Table 5
Per EEG record, the individual optimal parameter values for the
derivation of the spatio-temporal template

EEG hS hRRE dr (cm) de (�) n* RRE

1 0.72 0.050 1.5 30 0.46 0.15
2 0.63 0.025 2.5 10 0.38 0.51
3 0.65 0.035 1.3 30 0.53 0.13
4 0.76 0.030 2.1 5 0.51 0.12
5 0.75 0.030 1.8 20 0.31 0.06
6 0.41 0.025 2.0 45 0.21 0.39
7 0.67 0.035 2.1 20 0.44 0.40
8 0.80 0.025 2.2 35 0.50 0.72

The last two columns show the total number of windows selected (in
percentage) and the RRE value obtained with these parameter values.

* These numbers are expressed in percentages (%).
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2.3.4. Leave-one-out cross validation

The method requires the selection of four free parame-
ters, i.e., hS ; hRRE; dr and de. These parameters control the
derivation of the spatio-temporal template: hS and hRRE

control n (the total number of windows selected is in per-
centage, relative to the total number of windows), the total
number of windows selected (after grouping), while dr and
de control the formation of the epileptiform cluster used for
the construction of the template. To obtain a good detec-
tion performance, these parameters should be chosen so
that the derived template matches, as closely as possible,
the epileptiform activity we are interested in. Optimal
parameter values can thus be set by minimizing the error
measure RRE (Eq. 2.7) as a function of these parameters.

To obtain a fair estimate of the performance of the
method, we used a leave-one-out cross validation. This is
a well-established method for estimating the performance
of a method when the available data set is too small to
allow a separate training and test set (Theodoridis and
Koutroumbas, 1999). If the EEGs used are representative
of the population, a leave-one-out cross validation pro-
vides a sound estimate of the performance that would be
achieved with a separate test set.

Seven out of eight EEG records were used for training
(training set), and the remaining EEG was used for testing
(test set). This procedure was repeated eight times so that
all EEGs were used once for testing. Optimal parameters
per EEG were obtained by minimizing the error measure
RRE as a function of hS ; hRRE; dr and de. The parameter
values were varied as follows (using the notation minimum
: step size : maximum): hS ¼ 0 : 0:01 : 1; hRRE ¼ 0 : 0:005 :
0:06;dr ¼ 1 : 0:1 : 2:5 cm; de ¼ 0 : 5 : 45
;n¼ 0 : 01 : 0:55%.
Optimal values of hS and hRRE result in n� total number
of selected windows. If hRRE is kept constant, there is a
one-to-one relationship between hS and n.

Optimal parameters over the training set were obtained
by taking the average of the individual optimal parameter
Table 4
Summary of the main findings of the evaluation of the method

EEG Dipole
clustering

Localization of
epileptic focus d (cm)

Template
RRE

Detection
performance

1 Ok 0.1 0.22 Ok
2 Ok 0.5 0.55a Ok
3 Ok 0.8 0.21 Ok
4 Ok 0.6 0.13 Ok
5 Ok 0.6 0.06 Ok
6 Ok 1.0 0.50a Ok
7 Nokb 7.8 0.85 Nokc

8 okd 1.9 0.98, Noke Nokf

a Good template for detection, relatively high RRE value due to
background EEG activity not related to the epileptiform events.

b Clustering failed.
c No valid template could be derived because clustering failed.
d Widespread activity; no typical epileptiform time series revealed;

epileptiform cluster pointed to correct brain region.
e Widespread activity that cannot be modelled using a single dipole

model.
f Low performance due to an inadequate template; widespread activity.
values n�; hRRE; dr and de of each EEG of the training set
and setting hS so that the derived optimal number of win-
dows were selected for the test EEG. Averaging over the
individual values of n� was preferred to averaging over
the individual hS values as the latter shows a greater
inter-subject variability, and the goal of the first step of
the method is to selected sufficient time instances of the
focal epileptiform activity of interest. The optimal param-
eters obtained using the training set were then used for
the test EEG.
3. Results

Table 4 summarizes the main findings regarding the
evaluation of the method (dipole clustering, localization
of epileptiform focus, template and detection
performance).
3.1. Leave-one-out cross validation

Table 5 shows the individual optimal parameter values
per EEG obtained by minimizing RRE. Table 6 lists, per
test EEG, the optimal parameter values obtained using
the training set, as well as the RRE value obtained for that
particular test record. Obviously, the RRE value obtained
Table 6
Parameter values for the derivation of the spatio-temporal template
obtained in the leave-one-out cross validation setup

EEG n* hRRE dr (cm) de (�) hS RRE

1 0.41 0.029 2.0 24 0.57 0.22
2 0.42 0.033 1.9 26 0.69 0.55
3 0.40 0.031 2.0 24 0.66 0.21
4 0.40 0.032 1.9 27 0.79 0.13
5 0.43 0.032 2.0 25 0.70 0.06
6 0.45 0.033 1.9 21 0.38 0.50
7 0.41 0.031 1.9 25 0.65 0.85
8 0.41 0.033 1.9 23 0.84 0.98

Values for each test EEG are obtained by taking the average of the indi-
vidual optimal parameters over all EEGs in the training set (i.e., all records
excluding the test EEG). The last column shows the RRE value obtained
for the test EEG for these parameter values.

* These numbers are expressed in percentages (%).
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for each test EEG is lower then the corresponding RRE
value obtained with the individual optimal parameters.
All results shown in the following sections are with the
parameters for each EEG set as listed in Table 6.

3.2. Dipole clustering

Fig. 4 shows the results of the clustering of the dipole
position and orientation vectors representing focal brain
activity. The three leftmost figures in each row show
the dipoles in a frontal, top and side view, respectively,
to give a better understanding of the 3D locations of
the dipoles in the spherical head model. Each cluster is
Fig. 4. Results of the clustering of the dipole position and orientation vectors r
in a frontal, top and side view, respectively. Each found cluster is indicated by a
positions of that cluster. The epileptiform cluster is shown in red, while other c
windows (and hence dipoles). Ni denotes the number of dipoles in cluster i. Th
The red bold line is the average time series. For all EEG records, the method s
For EEG record 8, the method could not identify typical epileptiform time s
pointed to the correct brain region. (For interpretation of the references to co
paper.)
indicated by a circle with a radius of 15 mm and its cen-
tre equal to the mean of all dipole position vectors of
that cluster. The epileptiform cluster is shown in red,
while other clusters (if any) are plotted in blue. The
rightmost figure in each row shows the dipole time series
of the epileptiform cluster. The red bold line is the aver-
age time series. From this figure we can appreciate that
the method succeeded, except for record 7, in forming
clusters of dipoles with similar position and orientation
vectors representing the focal brain activity in the record-
ing, and extracting the corresponding time series. Iso-
lated or randomly scattered dipole sources are not
grouped into a cluster.
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For record 5, the method found three clusters. Fig. 3 dis-
plays the dipole time series corresponding to these three
clusters. From this figure the epileptiform cluster can easily
be identified, as the first two clusters show no typical epi-
leptiform time series, while the third cluster reveals a clear
epileptiform pattern. The method automatically deter-
mined the third cluster as the epileptiform cluster because
it has the largest sharpness magnitude at the peak of the
normalized average time series (sharpness magnitude val-
ues are indicated between square brackets). Also for the
other records where the method found more than one clus-
ter, it correctly identified the epileptiform cluster by exam-
ining the sharpness at the peak of the averaged dipole time
series per cluster.

For record 7, the method fails as no cluster was found
that corresponded to the epileptiform activity. The epilep-
tiform activity could only be found by manually lowering
the parameter hS . When sufficient windows were selected,
the method could identify the epileptiform cluster. For
record 8, the method formed four clusters, but none of
these revealed a typical epileptiform time series. The clini-
cal summary of this EEG states that ‘‘throughout the
recording there are right frontal sharp, spike and slow wave
discharges. These may be confined to the right frontal
quadrant or may spread to involve the whole of the right
hemisphere and occasionally become incompletely general-
ized.” This widespread activity cannot adequately be cap-
tured by the method, as the method explicitly relies on a
dipole model representing focal brain activity. This is also
reflected in the high RRE value of 0.98 (and for parameters
optimal for this EEG it is still 0.72, see Tables 5 and 6).
However, the clusters formed by the method do point to
the region in the brain involved in the epileptiform activity.

3.3. Localization of epileptic focus

Fig. 5 shows the comparison of the epileptiform cluster
with the dipole analysis results of the definite epileptiform



Fig. 5. Comparison of the epileptiform cluster with the dipole analysis results of the definite epileptiform events. The figures show all dipoles
corresponding to the definite epileptiform events in the consensus labelling, in a frontal, top and side view, respectively. The region of definites (ROD) was
established as the region of highest dipole position vector density. The ROD is indicated by a green circle of radius 1.5 cm. Superimposed on this plot are
the dipoles of the epileptiform cluster (in red), indicated by red circle with radius 15 mm. #d denotes the number of definite epileptiform events in the
consensus labelling, #dROD the number of dipoles in the ROD, Ni the number of dipoles in the epileptiform cluster and d is the Euclidean distance between
the centre of the ROD and the centre of the epileptiform cluster. The results show a good concurrence of the epileptiform cluster with the ROD, with an
average distance of 8 mm (leaving out EEG record 7 for which the clustering failed). Note the systematic shift between both regions. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this paper.)
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events in the consensus labelling. The figure shows all
dipoles corresponding to the definite epileptiform events
in a frontal, top and side view, respectively. The region
of definites (ROD) is indicated by a green circle of radius
15 mm. Superimposed on this plot are the dipoles of the
epileptiform cluster (in red), indicated by a red circle with
radius 15 mm. From this figure we can appreciate the con-
currence of the epileptiform cluster with the ROD. If we
leave out record 7 (for which the clustering fails), the mean
distance between the two regions was 8 mm, showing a
good agreement.

For record 7 no agreement with the ROD was found.
For record 8, as already discussed, there is a large scatter
of the dipoles corresponding to the epileptiform events.
This widespread activity makes it difficult to speak of a
ROD. Nonetheless, the epileptiform cluster is found in
the frontal region, in accordance with the clinical findings
of this patient.

Note that for the construction of the ROD, dipole
analysis was performed with the dipole analysis window
centred on the peak of the spike of the definite epilepti-
form events in the consensus labelling. The detection
method on the other hand returns dipole positions from
a dipole analysis of automatically selected windows.
Although the dipole time series are aligned at the point
of maximal sharpness magnitude prior to the clustering
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Fig. 6. Comparison of the spatio-temporal template T (in red) with Vdef , the mean of all EEG segments that correspond to the definite epileptiform events
(in green). The results indicate a good agreement with a low value of RRE, except for EEG records 7 (clustering failed) and 8 (widespread activity). For
EEG records 2 and 6 we find a relatively high value of RRE due to background EEG activity not related to the epileptiform events (channels Fp2-F8 and
F8-T4 for EEG record 2, and channel Fp2-F4 for EEG record 6).
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step, the dipole position vectors used in the clustering are
those of the selected windows, i.e. windows with a high
Sk and low RREk value. Since it was found that the
parameter S used in the selection step of the method
often obtains its highest values at the wave of the epilep-
tiform events, rather than at the spike, the dipole analy-
sis window of the method is then shifted in time with
respect to the analysis window of the definite epilepti-
form events. This could explain a systematic shift
between the epileptiform cluster and the ROD: the shift
in position between both could be related to a spreading
phenomena of the epileptiform events resulting in differ-
ent dipole positions obtained for the events at their peak
and at their subsequent wave.
Table 7
Summary of the detection performance of the different detection methods eva

EEG Mimetic Wavelet

Sens Selc Sens Selc

1 0.79 0.89 0.78 0.76
2 0.95 0.90 0.80 0.89
3 1.00 0.82 0.92 0.85
4 1.00 0.58 0.93 0.74
5 1.00 0.95 0.94 0.93
6 0.90 0.64 0.85 0.92
7 1.00 0.94 0.97 0.94
8 0.94 0.93 0.59 0.78

Mean 0.95 0.83 0.85 0.85

Listed sensitivity (sens) and selectivity (selc) values for the different detection
equal to the point closest to the optimal point (1.00, 1.00). The temporal dete
epileptiform activity. The proposed detection method shows comparable or b
3.4. Template

Fig. 6 displays the spatio-temporal template T (in red)
obtained by the method, superimposed on Vdef , the mean
of all EEG segments whose dipole position vector lies
inside the constructed ROD (in green). In this figure it
can be seen that the method returns a template T which
corresponds well with Vdef , hence confirming the validity
of the template, except for EEG records 7 and 8. For
EEG record 7 the method fails, as already stated, because
no epileptiform cluster could be formed, and hence no valid
template could be derived. EEG record 8 contains wide-
spread epileptiform activity. Although it was possible to
localize the epileptic focus, the retrieved time series are
luated using PR-curves

Dipole analysis Spatio-temporal

Sens Selc Sens Selc

0.87 0.28 0.85 0.91
0.89 0.15 0.97 0.90
0.92 0.34 0.87 0.80
0.98 0.34 0.96 0.76
0.69 0.28 0.99 0.94
0.90 0.21 0.94 0.93
0.89 0.05 1.00 0.05
0.83 0.15 0.81 0.85

0.87 0.23 0.92 0.77

methods are the values obtained with the working point on the PR-curve
ction methods were applied to the EEG channel most clearly showing the
etter detection performance for all EEG records, except 7 and 8.
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inaccurate for forming a valid template. For EEG records 2
and 6 we find a relatively high value of RRE. For these
EEG records, Vdef contains background activity not related
to the epileptiform events (channels Fp2-F8 and F8-T4 for
EEG record 2, and channel Fp2-F4 for EEG record 6). The
template, however, is based on a single dipole model and
can only capture the activity on the channels related to
the epileptiform activity, as is actually desired.

3.5. Detection performance

Table 7 shows the sensitivity and selectivity values for
the different detection methods obtained with the working
point on the PR-curve equal to the point M closest to the
optimal point (1.00, 1.00).

From Table 7 we can draw a number of conclusions.
First, the two temporal detection methods perform reason-
ably well. Neither clearly outperforms the other: for EEG
records 1, 2, 5 and 8 the mimetic based detection method
gives better results, for EEG records 4 and 6 the wavelet
based detection method performs best, while showing sim-
ilar performance for EEG records 3 and 7. It is important
to note that the temporal methods, as used in this evalua-
tion, require the visual selection of the EEG channel that
most clearly shows the epileptiform activity (resulting in
the best possible performance obtainable by these
methods).

Second, the spatial approach of Van Hoey et al. has a
low detection performance and, hence, is not sufficient
for the detection of epileptiform events in its own.

Third, when comparing the performance of all methods,
we find a comparable or better detection performance of
the new method, except for EEG records 7 and 8. This is
due to the invalidity of the template, as discussed. Further
investigation into the detection results of the proposed
method (for all EEG records) reveals that most false posi-
tives are due to electrode artifacts. Eye blink artifacts gen-
erally caused no problems. Occasionally the method
correctly marked an epileptiform event that was not
labelled as such by the experts because it was obscured
by muscle artifact.

4. Discussion

4.1. Results and methodological considerations

The starting point of the proposed method is a spatial
detection method (Van Hoey et al., 2000; Van Hoey,
2000). From the results presented in this study in Section
3.5 it is clear that for spike detection, inclusion of the tem-
poral information is vital to obtain a good detection per-
formance. To be able to make use of this valuable
information, an alignment of the dipole series was required.
This problem could be solved by aligning the time series at
the point of maximal sharpness, as described in, so that all
spikes were aligned at their peaks. No prior information
regarding the temporal waveform is assumed or implied,
only that the epileptiform waveform is characterized by a
large sharpness at the peak of the spike. A correct align-
ment could not be obtained by aligning the dipole time ser-
ies at the maximum of the time series, because sometimes
the wave following the spike was larger in amplitude than
the spike itself. The sharpness as calculated here has the
same interpretation as in Dingle et al. (1993), but was more
conveniently calculated using two linear filter operations,
eliminating the need for a wave and halfwaves analysis.

For the dipole analysis we used a simple spherical head
model. More complex, realistic head models exist (Heinon-
en et al., 1997; Hallez et al., 2005). Although the use of a
spherical head model introduces localization errors, we
preferred this simple head model because it allows the
use of an analytic formula for the forward problem (Salu
et al., 1990). This is thus not a restriction of the method:
if preferred, a realistic head model can be used to obtain
more accurate localization results for clinical application
(Ebersole and Hawes-Ebersole, 2007). However, for the
detection of epileptiform events as performed in the pro-
posed method, we expect the influence of the head model
to be of minor importance. Most important is that a mean-
ingful clustering can be obtained. The use of a realistic
head model would result in a lower estimation bias and
variance on the dipole position estimates. As such, how-
ever, the lower bias would only imply a shift of the fitted
dipole positions, which is unimportant when forming clus-
ters of dipoles (since all dipoles will shift roughly with the
same amount). The smaller variance would only imply that
a smaller value of dr can be set.

In our study we used the region of definites (ROD) as an
estimate of the epileptic focus. The gold standard to deter-
mine the epileptic focus is by using depth-electrodes. To
fully quantify the localization results of the method, we
should thus use a realistic head model in the source analysis
step of the method, and compare the results with the posi-
tion of the focus as determined by a depth-recording. The
current setup serves to demonstrate that the method is
capable of identifying activity in the EEG useful for auto-
matically determining the position of the epileptic focus.
The evaluation of EEG source analysis as a noninvasive
examination (e.g., as part of the presurgical evaluation) is
outside the scope of this work.

For the calculation of sensitivity and selectivity values of
the different detection methods, we used a dichotomous
labelling (definite and questionable) of the epileptiform
events, and specified the rules for the construction of the
consensus labelling and assignment into TP, FP and FN.
We believe that the use of a dichotomous labelling and
the specified rules for the construction of the consensus
labelling and assignment into TP, FP and FN reflect the
true nature and purpose of the detection of epileptiform
events: one does not want to miss obvious epileptiform
activity and one wants as few spurious detections due to
artifacts as possible, but one can tolerate that events, for
which no clear consensus between the experts exists, are
not detected (missed questionable epileptiform activity is
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not penalized due to the rule of not including missed ques-
tionable events).

It is difficult to compare the detection performance of
the method with the detection performance of methods
reported in the literature, since the detection performance
is highly dependent on the particular data set used, and
no universal EEG data set exists to evaluate (or develop)
a detection method (Wilson and Emerson, 2002). Here
we chose to implement some other detection methods,
apply them to the same data set labeled by two indepen-
dent experts, and study their performance using PR-curves.
We believe that this setup allows us to make statements
regarding the performance of the method compared to
other methods and view the performance of the proposed
method in its proper context.

The proposed method does not contain any special rules
to handle artifacts, although this is commonly found in
detection methods. The data set we used contained eye
blink artifacts, as well as (some) muscle and electrode arti-
facts. The latter were the source of a number of false pos-
itives; eye blink artifacts were in general no cause of false
positives. For this data set, a good detection performance
could be obtained and clinical relevant information could
be derived, without paying special attention to artifacts
present. This is partly due to the artifact rejection inherent
in the window selection criterion jjrkjj2 < he (Flanagan
et al., 2003). For other data with contamination of different
sources, if necessary, an artifact removal pre-processing

step can easily be added to the method. Eye blink and elec-
trode artifacts could be removed using an ICA based
removal algorithm (Vigario, 1997; Joyce et al., 2004). For
muscle artifacts one could opt for the method described
in De Clercq et al. (2006).

The proposed method has features in common with the
method presented in Ossadtchi et al. (2004). That method
searches for significant clusters of dipoles by applying
RAP-MUSIC to a signal subspace spanned by ICA com-
ponents exhibiting spike-like characteristics. For our data
set, PCA was sufficient to extract the topography of the
epileptiform events and showed good results. Since we
explicitly search for windows with a high S value, the
dimension of the signal subspace for these windows will
be close to one, so that one can deduce that the use of
ICA and/or RAP-MUSIC for these windows will not
greatly change the results of the source analysis step. ICA
and/or RAP-MUSIC, however, might be able to extract
useful information from windows that are now excluded
because of high background activity (resulting in a lower
S value).

4.2. Clinical relevance

The method derives important clinical relevant informa-
tion from the EEG. It provides information regarding the
epileptic focus by presenting the result of the dipole cluster-
ing. As such, it gives the location of the epileptic focus,
together with the dipole time series. The method allows
the identification and quantification of epileptiform events
throughout a recording, which is of considerable impor-
tance in the diagnosis and characterization of epilepsy.

If desired, the method could also be used as an offline

exploration tool. Given an EEG record, one could explore
the focal activity in this record by changing the parameters
that handle the selection of windows, hS and hRRE, and by
observing the clusters of dipoles and corresponding time
series.

The method first derives a template T from an EEG
record of limited duration (about 20 min, as was the case
in this study), which is subsequently used for detection.
Once a template has been derived, this template could be
used for real-time detection of epileptiform events.

4.3. Limitations

The method as presented here clearly has the limitation
that it is restricted to focal epileptiform events, since it
explicitly searches for a single dominant source with a
dipolar field. Thus, it cannot be used for detecting epilepti-
form events in generalized epilepsy or epilepsy in which
there are multiple foci. However, the method could easily
be extended within the current framework to relax some
of these limitations. For example, instead of building only
one template, one could derive a template for each cluster
that one considers important or relevant. A selection crite-
rion similar to the one implemented now to determine the
epileptiform cluster could be used.

Visual inspection of the EEG is still required to a cer-
tain level. However, the method greatly facilitates this
process. The selection and clustering procedure is com-
pletely automated and inspection of the clustering results
only requires a fraction of the time needed for a full
visual analysis to determine the epileptiform focus. If
the EEG record would contain widespread activity or
activity from multiple foci, this should be apparent in
the clustering results. For widespread activity clustering
results will probably be similar to what was observed
in subject 8. For multiple foci we expect to find different
clusters showing an epileptiform pattern.

The method was developed based on EEG recordings
from eight patients, and tested on the same data set. A
leave-one-out cross validation was used to handle the free
parameters of the method in order to get a fair estimate
of the performance of the method. However, future exper-
iments are needed to confirm the positive findings of the
method and to elucidate whether the presented methodol-
ogy generalizes to data independent from our data set.
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D’Havé, M et al. Detection and localization of epileptic brain activity
using an artificial neural network for dipole source analysis. In:
Proceedings of the EUSIPCO2000 conference, September 5–8, 2000,
Tampere, Finland.

Van Veen BD, Buckley KM. Beamforming: a versatile approach to spatial
filtering. IEEE Acoust Speech Signal Process Mag 1988;5:4–24.

Vanrumste B, Jones RD, Bones PJ, Carroll GJ. Slow-wave activity
arising from the same area as epileptiform activity in the EEG of
paediatric patients with focal epilepsy. Clin Neurophysiol
2005;116(1):9–17.

Vigario RN. Extraction of ocular artefacts from EEG using independent
component analysis. Electroencephalogr Clin Neurophysiol
1997;103(3):395–404.

Wilson SB, Emerson R. Spike detection: a review and comparison of
algorithms. Clin Neurophysiol 2002;113(12):1873–81.

Wilson SB, Harner RN, Duffy FH, Tharp BR, Nuwer MR, Sperling MR.
Spike detection. 1. Correlation and reliability of human experts.
Electroencephalogr Clin Neurophysiol 1996;98(3):186–98.


	Detection of focal epileptiform events in the EEG by spatio-temporal dipole clustering
	Introduction
	Methods
	EEG data
	Spatio-temporal detection method
	Dipole source analysis
	Selection of focal brain activity
	Spatio-temporal dipole clustering
	Spatio-temporal template
	Template matching

	Evaluation of the spatio-temporal detection method
	Localization of epileptic focus
	Template
	Detection performance
	Mimetic detection method
	Wavelet detection method
	Dipole analysis detection method
	Evaluation measures

	Leave-one-out cross validation


	Results
	Leave-one-out cross validation
	Dipole clustering
	Localization of epileptic focus
	Template
	Detection performance

	Discussion
	Results and methodological considerations
	Clinical relevance
	Limitations

	References


